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Abstract

Our study introduces Variational Recurrent Neural Networks (VRNNs) for stock
price prediction through a cinematic approach: transforming complex market data
into dynamic, graph-based narratives that unfold like a movie. Analyzing S&P 500
constituents from 1993 to 2021, we achieve Sharpe ratios of 2.94 for equally weighted and
2.47 for value-weighted portfolios. After adjusting for a transaction cost, our model’s
Sharpe ratio remains twice as high as that reported by Jiang et al. (2023). Our method
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1 Introduction

The endeavor to accurately predict future stock price movements has perennially been at

the heart of financial economics. This pursuit, foundational to trading strategies and risk

management, is intricate due to the multifaceted nature of financial markets. Traditional

models, which predominantly rely on numerical time-series data, often grapple with the

market’s evolving patterns, pronounced volatility, and susceptibility to various external in-

fluences. Such challenges underscore the pressing need for a more innovative and adaptable

approach to forecasting.

Financial markets are not static entities; they pulsate with life, evolving and react-

ing to many stimuli. This dynamism is reminiscent of frames in a cinematic reel, where

each frame, though a standalone snapshot, is intrinsically linked to its predecessor, paint-

ing a broader narrative. Similarly, today’s stock market reflects yesterday’s, and one must

grasp this sequential relationship to forecast tomorrow’s. It is here that our research intro-

duces a paradigm shift. By harnessing the power of Variational Recurrent Neural Networks

(VRNNs), we aim to predict stock price trends, translating daily price changes into graphical

representations and training the model to forecast future trajectories.

To elucidate the significance of this approach, consider the dot-com bubble of the late

1990s and early 2000s. A static snapshot during the bubble’s zenith would portray tech

stocks as the golden geese of the era. However, a more ‘animated’ perspective reveals a

sequence: the mid-1990s rise of the internet, the late 1990s’ exponential growth in tech

valuations, the bubble’s peak around 2000, and its eventual burst in the early 2000s. This

sequence, akin to movie frames, provides a holistic understanding of the bubble’s buildup,

climax, and denouement.

The Variational Recurrent Neural Network (VRNN) model exhibits a distinctive capa-

bility to integrate and leverage historical events, such as mergers and acquisitions, into its

predictive analysis, setting it apart from conventional time series forecasting methods. Un-

like traditional models that might analyze data in isolation or within a static framework, the
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VRNN dynamically incorporates a sequence of data points, effectively ’remembering’ sig-

nificant market events and their aftermath within its predictions. This is achieved through

the VRNN’s sophisticated architecture, which melds the sequential memory strengths of Re-

current Neural Networks with the deep learning prowess of Convolutional Neural Networks

and the probabilistic approach of Variational Autoencoders. As a result, the VRNN can

offer nuanced insights into future market behavior by understanding the long-term impli-

cations of pivotal events far beyond the immediate impact period. This quality makes the

VRNN particularly adept at navigating the complexities of financial markets, where the rip-

ples of major events can influence market dynamics well beyond their occurrence, providing

a more informed and holistic approach to predicting stock movements compared to other

methodologies.

In finance, researchers have been using machine learning to predict asset returns and

measure risk premiums. Such studies include those conducted by Feng, He, and Polson

(2018), Chen, Pelger, and Zhu (2023), and Gu, Kelly, and Xiu (2020). However, many

of these studies have relied on traditional feed-forward neural networks that only consider

features of fixed dimensions and do not consider the longer-term sequential dependency of

asset prices and returns. There is a limitation because asset returns are known to follow

both short-term and long-term patterns, such as return momentum and reversal patterns.

To address this issue, it is important to model the sequential dependence of asset returns

when designing strategies that rely on such data. Our study contributes to this literature by

exploring the mechanisms and performance of various deep sequence modeling techniques,

specifically in estimating the risk premiums of U.S. equities. The same analogy applies to

weather forecasts, using frames instead of single graphs (Bi et al., 2023).

In this way, frames form a recurrence (or sequence) in the model that is also a character-

istic part of financial markets. That is why predicting financial markets with their dynamics

as frames is better than comparing two static graphs (for example, a graph with observed

and predicted prices).

2



Our research shifts the focus from the commonly preferred return predictions to the direct

forecasting of asset prices. This approach is grounded in the practical utility of knowing fu-

ture price levels for trading decisions. Price forecasts provide specific, actionable information,

such as precise future price levels, directly applicable to trading strategies like setting stop-

loss orders or planning entry and exit points. Return predictions do not offer this specificity

directly, requiring additional steps to translate returns into actionable price levels.

The autocorrelation in price data is a key advantage our model leverages. Prices tend

to follow a pattern where current levels are closely related to past levels, making them

more predictable. This starkly contrasts returns, which generally show less autocorrelation,

making them more challenging to predict accurately. While it is true that the financial

community often focuses on returns due to their normalized nature and ease of comparison

across different assets, our research suggests that the direct prediction of prices can offer

more immediate and actionable insights for traders and investors.

Our study focuses on predicting the prices of the S&P500 constituents to calculate our

Sharpe ratio (SR) from weekly returns from 1993-2021. We find that equally weighted

portfolios had an SR of 2.94, while value-weighted portfolios had an SR of 2.47.

In comparison, Jiang, Kelly, and Xiu (2023) report a lower equal-weighted SR of 0.78 and

a value-weighted SR of 0.96. Although our SR is surprisingly high, our turnover is also high,

at 1121% and 1156% for equal-weighted and value-weighted portfolios, respectively. This is

compared to the turnover of 676% and 693% from Jiang et al (2023). Therefore, we factor

in transaction costs of 10 basis points, resulting in an SR of 1.61 and 1.21 for equal-weighted

and value-weighted portfolios, respectively.1

Our analysis reveals that increased predicted pixel changes are inversely associated with

1-month momentum, return volatility, and the bid-ask spread. After adjusting for moving

average momentum and various firm characteristics, we observe that predicted pixel changes

strongly increase weekly returns, confirming VRNN’s strong performance. Additionally, we
1This adjustment is in line with the standard trading cost for stocks exceeding the 80th size percentile

of the NYSE (Frazzini, Israel, & Moskowitz, 2018; Ke, Kelly, & Xiu, 2019).
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show that financial institutions are actively engaging with our strategy. Intriguingly, our

findings indicate that retail traders are implementing our strategy, albeit significantly less

than institutional traders.

Our trading strategy involves longing stocks in the highest quintile of predicted change

in pixel and selling the opposite while controlling for prominent factors from seminal models,

such as the six-factor model of Fama and French (2018), the five-factor model of Hou, Mo,

Xue, and Zhang (2021), the behavioral model of Daniel, Hirshleifer, and Sun (2020), short-

term reversal, and long-term reversal factors. Our alpha from this strategy is approximately

55 basis points per week. In other words, we buy stocks expected to increase the most in

price and sell stocks expected to decrease the most in price based on the model’s predictions

from the visual representation of their price movements.

It is important to note that our strategy is based on the constituents of S&P500 stocks,

which are large-cap, highly liquid, and have low transaction costs. Predicting outcomes in

this market is notoriously difficult, which makes our average SR of over 1.4 after transaction

costs still quite high.

Our study introduces a new approach to predicting future US stock prices as video

sequences using Variational Recurrent Neural Networks (VRNNs). This methodology har-

nesses the synergistic strengths of Recurrent Neural Networks (RNNs), Variational Autoen-

coders (VAEs), and Convolutional Neural Networks (CNNs) to capture both temporal and

spatial relationships between price movements.

To understand our model, it is helpful to liken it to the process of creating a movie.

Recurrent Neural Networks (RNNs) act like scriptwriters, capturing the storyline of stock

prices over time. They remember what happened in previous frames (or days) to make edu-

cated guesses about what comes next. Variational Autoencoders (VAEs) are like the special

effects team, adding depth and dimension to our movie. They help our model understand

the range of possible future scenarios by learning to represent complex data in simpler forms.

Lastly, Convolutional Neural Networks (CNNs) work as the cinematographers, focusing on

4



the visual patterns within each frame. They identify important features in the data, such

as sudden price spikes or drops, much like a camera focuses on key elements in a scene. To-

gether, these technologies enable our model to generate dynamic, predictive video sequences

of stock prices, capturing the flow of time and the intricate patterns within the data.

Complexity in financial market dynamics often cannot be sufficiently captured through

simple numerical forecasts. The ability of our methodology to predict more than mere price

movements - such as volatility trends and trading volumes - presents a much more holistic

view of the market’s future. This depth of insight is invaluable in strategic decision-making

processes, aiding investors in managing risk and potential returns better.

Our results demonstrate the VRNN model’s capacity to accurately forecast the trajectory

of market data changes for the next ten trading days. These forecasts cover closing prices,

maximum and minimum prices, the direction of a 20-day moving average, and volumes. This

multi-dimensional output offers an enriched prediction of market trends and arms investors

with a holistic understanding of the anticipated market performance, empowering them to

strategize their investment decisions effectively.

Understanding stock price reactions to company announcements is paramount in the

intricate world of financial markets. To deepen our understanding of our approach, we com-

pare ours with the traditional prediction models that employ an expanded window approach,

such as momentum and short-term and long-term reversals. We meticulously consider all

past stock reactions to predict future movements. For instance, when predicting a stock’s

reaction on the 30th day, these models would analyze the stock’s behavior from the 1st day

to the 29th day. While comprehensive, this method treats each day’s reaction as an isolated

event, potentially overlooking the evolving nature of stock reactions.

Consider a scenario with Microsoft, a tech giant known for its diverse product portfo-

lio and strategic acquisitions. Over several months, Microsoft has released updates to its

Windows operating system, launched new Surface devices, and announced collaborations

with various tech companies. On a particular day, Microsoft announces a groundbreaking
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acquisition of Activision Blizzard, a leading video game publisher. Traditional models, which

analyze all past stock reactions, might struggle to predict the market’s response to this un-

expected event accurately. Without a similar prior acquisition announcement as a reference,

these models might base their prediction on the average of all past reactions to Microsoft’s

announcements, potentially underestimating the impact of this significant acquisition.

In contrast, a VRNN approach would consider the dynamic ‘memory’ of Microsoft’s stock

reactions to various events over time. This memory captures evolving patterns, such as how

the stock has historically responded to different announcements, including product launches,

updates, and acquisitions. When Microsoft announces the acquisition of Activision Blizzard,

the VRNN, informed by its memory of past reactions, would analyze this new event in the

context of Microsoft’s historical patterns. It might recognize the acquisition announcement

as a significant positive development, similar to past positive announcements, and predict a

strong market reaction based on the cumulative knowledge of how the stock has reacted to

similar events in the past.

Consider a technology company that is active in announcing new products, updates,

and various business developments over several months. On the 32nd day, they announce a

significant merger with another tech giant. Traditional predictive models, which analyze a

broad range of past events, might not perform well in this scenario. These models typically

average the stock’s reactions to past announcements. Still, if they have not encountered a

merger announcement before, their prediction for the stock’s reaction to the merger might

be off, simply averaging out the responses to less significant news.

This is where the Variational Recurrent Neural Network (VRNN) approach shines. The

VRNN has a dynamic ’memory’ that tracks and learns from the stock’s reactions, adapt-

ing to new information. It recognizes patterns in how the stock price responds to different

announcements. For example, if the stock has shown increasingly positive reactions to part-

nership announcements over time, the VRNN uses this information to understand the context

better. When the merger announcement comes—a type of super partnership—the VRNN,
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drawing on its nuanced memory of past reactions, can predict a stronger-than-average re-

sponse to this news. Unlike traditional models, the VRNN does not just look at past reac-

tions in isolation; it understands the evolving context and significance of different types of

announcements, allowing it to make a more informed prediction about the stock’s reaction

to the merger.

As another example, consider a tech stock that, over 10 days, reacts to a series of product

announcements with the following percentage changes: [1%, 2%, -1%, 0.5%, 1.5%, 2%, -

1.5%, 0.5%, 1.5%, 2.5%]. A discernible pattern emerges: modest gains often precede a slight

dip. Using a traditional expanded window approach, the model would analyze all previous

percentage changes to predict the stock’s reaction on the 11th day, treating each as an

independent data point. The prediction might be a simple average, suggesting a modest

gain.

However, a VRNN approach, with its dynamic memory, would recognize the sequence’s

rhythm. It would ‘remember’ the stock’s tendency to dip after a series of gains. Given

that the last three days before the 11th showed gains, the VRNN might predict a dip for

the 11th day, aligning more closely with the stock’s observed behavior. This illustrative

example underscores the VRNN’s potential to capture intricate temporal patterns in stock

price reactions, offering a nuanced lens for financial forecasting.

In this research, we delve into VRNN’s potential to capture the sequential and evolving

nature of stock price reactions, offering a fresh perspective in the ever-complex realm of

financial forecasting.

The VRNN model uniquely combines the strengths of Recurrent Neural Networks (RNNs),

Variational Autoencoders (VAEs), and Convolutional Neural Networks (CNNs) to process

and predict complex financial data like stock prices with superior accuracy. The RNN com-

ponent is crucial for handling sequential data, utilizing a hidden state as a form of memory

to capture and leverage information from previous time steps. This allows the VRNN to

maintain continuity and recognize temporal patterns in stock price movements.
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The VAE element introduces a probabilistic layer to the model, enabling it to handle the

inherent uncertainty and variability in financial markets. By encoding data into a proba-

bilistic space, the VAE allows the VRNN to make informed predictions despite ambiguous or

incomplete information, assessing the likelihood of various outcomes based on past patterns.

Complementing the RNN and VAE, the CNN component excels in processing spatial

data and identifying complex patterns. In financial forecasting, CNN can analyze the spa-

tial relationships in market data—such as the arrangement of price movements within a

given timeframe—to detect patterns that might not be immediately apparent from a purely

temporal analysis.

When these three components work together, the VRNN leverages the CNN’s ability to

dissect spatial patterns, the RNN’s capacity to understand and remember sequences, and

the VAE’s proficiency in managing uncertainty. This integrated approach allows the VRNN

to capture a more comprehensive picture of market dynamics, making it adept at predicting

stock prices with depth and accuracy that surpasses models relying solely on the CNNs or

any single component.

The synergy between the RNC’s sequential memory, the VAE’s probabilistic insights, and

the CNN’s spatial pattern recognition equip the VRNN with a multifaceted understanding

of financial data. This enables the model to anticipate price movements more effectively

by considering the order of events and the complex interplay of factors influencing market

behavior. As a result, the VRNN stands out for its ability to deliver nuanced and robust

price predictions, harnessing the combined power of RNN, VAE, and CNN technologies to

navigate the complexities of financial forecasting.

2 Contribution and Related Research

Our study contributes to financial economics in multiple ways. Not only does it introduce

a novel VRNN-based methodology for predicting future stock prices, but it also paves the
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way for the application of advanced machine learning techniques in financial forecasting.

The multidimensional output of our model aids in making informed investment decisions by

offering a rich and nuanced understanding of market trends.

Numerous studies have explored the influence of images, graphs, and colors on investment

decisions and stock prices. However, examining graphs and machine learning and their

impact on stock prices is still in its early stages. The first paper to utilize machine learning

on images was conducted by Obaid and Pukthuanthong (2022). They use CNN to convert

images into a sentiment score and demonstrate that photo sentiment is more predictive than

text sentiment.

Jiang et al. (2023) is the first paper that uses graphs to predict returns; naturally, their

concept is closest to ours, though they are not the same. To illustrate, they transform

historical price and trading data into two-dimensional images and use CNN to analyze graphs

and predict prices based on patterns. We differ in several aspects from their approach.

First, our approach leverages VRNNs to predict stock market price movements. We

use visual representations in video frames, utilizing image-based machine learning models.

Our VRNN models combine the strengths of RNNs, VAEs, and CNNs to handle complex

sequential data efficiently. RNNs capture the temporal dependencies in stock prices, remem-

bering past price movements to predict future trends. VAEs compress and encode the data,

handling uncertainty in price movements. CNNs extract spatial features from each frame,

identifying patterns in price movements. Unlike CNNs, which only use static individual 2D

images, our VRNN models predict price movements as sequential frames akin to a ‘video.’

This approach enables our models to capture the sequential dependencies inherent in finan-

cial time series data, providing a more dynamic and comprehensive understanding of stock

price movements

Second, our predictions focus on the constituents of the S&P 500 index, emphasizing

short-term forecasts and stocks with high liquidity. In contrast, Jiang et al. (2023) analyzes

data from all companies listed on the NYSE, AMEX, and NASDAQ. While we do not specify
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a particular frequency for portfolio rebalancing, Jiang et al. (2023) find that their highest

Sharpe ratio is obtained with a five-day rebalancing period. On the other hand, their Sharpe

ratios for more extended rebalancing periods of 20 days and 60 days were significantly lower.

Our methodology is ideal for investors who frequently rebalance their portfolios and

engage actively with their investments. This approach suits those in trading roles that

require higher turnover or investors seeking more active involvement. The methodology

employed by Jiang et al., 2023 is more suitable for investors interested in medium to long-

term strategies as they analyze static 2D images representing longer-term trends. However,

this approach may not provide insights for short-term, quick decision-making.

Third, regarding liquidity, we focus on S&P 500 index companies, ensuring high liquidity

and lower transaction costs. This is particularly advantageous for institutional investors who

need to make significant transactions without impacting the market price significantly. On

the other hand, their study covers all companies listed on the NYSE, AMEX, and NASDAQ,

providing broader market coverage and potentially diversifying investment options. However,

this comes from lower liquidity and potentially higher transaction costs from tiny stocks.

Fourth, our model forecasts accuracy by predicting the direction and scale of price

changes, closing prices, maximum and minimum prices, the direction of a 20-day moving

average, and volumes. This level of detail provides investors with a comprehensive under-

standing of future stock performance. The video frames generated by our model depict stock

price movements over time, creating a dynamic and informative time-series-like visual out-

put. Our approach allows practitioners to consider short-term and medium-term investment

strategies based on predicted movements for the next ten trading days.

In comparison, Jiang et al. (2023) predict the probability of returns going up and down,

which provides a binary perspective on price movements. While this approach is more

straightforward and may be easier for practitioners to interpret, it lacks the detailed infor-

mation and accuracy of our dynamic, time-inclusive VRNN approach. Our methodology

is particularly advantageous for investors engaged in high-frequency trading strategies, as
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it offers a more nuanced understanding of price movements. By predicting the direction

and magnitude of price changes, our approach enables traders to make more informed de-

cisions, optimizing their trading strategies for better performance in a fast-paced market

environment.

While both studies use graphical representations in their methodology, the critical dif-

ference lies in the type of financial variable being predicted (returns vs. prices) and how

images are used in the prediction. Jiang et al. (2023) use their predicted probabilities to sort

portfolios to create portfolios that are likely to perform well based on the predicted direction

of stock prices. In contrast, we generate future images of price trends and then decode these

images to predict future prices.

It is worth noting that, like all predictive algorithms, our model has certain limitations.

However, despite these limitations, it offers a detailed and multi-dimensional view of fu-

ture market dynamics. The interpretation of the output may be more complex than more

straightforward binary predictions, but our approach is highly effective. While some other

methods, such as the methodology of Jiang et al. (2023), which utilizes static 2D images,

may be less computationally intensive, our results are focused on large and highly liquid

stocks. We are working on all stocks in the same sample as (2023) to disentangle which

step contributes to our performance. The result will be publicly available soon. The high

predictability threshold of these large stocks suggests that our model may also perform well

with smaller stocks.

Despite these constraints, we firmly believe that our work heralds a significant step

forward in financial forecasting. It underscores the potential of innovative machine learning

methodologies in generating nuanced, visually intuitive, and comprehensive market forecasts,

thus adding a robust tool to the arsenal of investors and financial analysts. Our study is a

foundation for future research in this exciting and promising arena of graph-based financial

predictions.
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3 Animated Market Data

The advent of machine learning in finance has opened a gateway for sophisticated and efficient

forecasting methods. However, the complexity of financial markets and the multiplicity of

factors affecting them raise significant challenges for these methods. Here, we present a novel

approach to address this complexity by leveraging animated market data. While stock price

changes are typically viewed statically, they exhibit a dynamic nature, akin to frames in a

movie, where each frame is closely related to its predecessor. In the same vein, current stock

market figures reflect their past performances. Thus, forecasting future price movements

hinges significantly on understanding this sequential relationship, which can be effectively

captured through animation.

3.1 Multivariate Graphical Data Input

The incredible information capacity of visuals serves as the bedrock of our research. Single

graphs can convey a multitude of information simultaneously, making interpretation more

accessible. Firstly, a single chart can depict an entire data series related to a specific variable,

such as a stock’s historical prices over a specified period. Secondly, one chart can encapsulate

multiple time-series data simultaneously, like overlaying stock prices, moving averages, and

trading volumes. Thirdly, in addition to portraying price data on the day of observation,

graphs can present information about their variability, broadening the data spectrum while

maintaining clarity. Lastly, the ability to use different colors in graphics makes it easier to

discern differences between observation points for each series.

In our study, we harness the power of visuals to capture past closing prices, maximum and

minimum prices, 20-day moving averages, and trading volume. We independently generate

each image for full control over its content and the optimal arrangement of all elements in

the chart. Jiang et al. (2023) inspire our chart construction. To our knowledge, we are the

first study to generate future graphs.2 Instead of processing the image to predict the return
2Jiang et al. (2023) predict the probability of stocks going up and down.
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direction, we incorporate several modifications to enhance the image clarity for machine

learning algorithms that will process them later. Figure 1 visualizes the comparison between

graphs from this study and those used by Jiang et al. (2023). The left graph we propose

displays 20 days of historical daily observations and predicts the market data for up to 10

days in the future. Meanwhile, the graph on the right, constructed by Jiang et al. (2023),

also uses 20 historical daily observations but predicts the direction of the price for 5, 20, or

60 days. It is important to note that their output is the probability of return direction, while

our predictions are prices up to 10 days ahead.

Primarily, closing prices are the most critical elements in charts, whether the predictive

task is forecasting returns, price changes, or prices themselves. Hence, we increase the

visibility of prices in the chart by modifying the typical OHLC (Open, High, Low, Close)

chart, where the closing price is merely a small dot, to a line chart connecting closing prices.

This line running through the entire chart is easily perceptible to the human eye and machine

learning algorithms.

Secondly, we omit to present opening prices, which do not provide significant predictive

value and are challenging to overlay when drawing closing prices as a line. Thirdly, we

color-code each of the utilized series. The closing prices are white, the trading volume is

light grey, the high-low (HL) bars are darker grey, and the moving average is the darkest

grey against a black background. This color differentiation makes it easier to distinguish,

for example, between closing prices and the moving average. Importantly, closing prices are

always overlaid last, so they remain visible irrespective of other data. The following section

discusses further modifications in chart creation that tailor our images to the main objective

of our study - capturing market dynamics through image animation.

3.2 Market Dynamics as Video Frames

Stock price changes on day t are conditional on the market information from the n preceding

days, much like the content of the last video frame depends on the information in the previous
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frames. Figure 2 illustrates the analogy between consecutive video frames in the popular

testing database ‘Bair Push Dataset’ (Ebert, Finn, Lee, & Levine, 2017) used to evaluate

the predictive abilities of machine learning models dedicated to forecasting subsequent video

frames and video frames generated by us to predict future stock prices. The changes in

the content of each frame are minor, as most of the information repeats in each of them.

The difference between the frames induces movement, which becomes apparent when frames

are composited into a single image and displayed sequentially over defined time intervals.

In the case of frames demonstrating the direction of stock prices, the content change only

involves two observations. With each subsequent frame, a new observation appears on the

right side of the chart, and the oldest observation disappears. In this manner, consecutive

frames demonstrate the dynamics of market price changes.

Figure 3 presents the base chart used to create a video for a single observation. We

then divide this chart into frames, each being an image of 64x64 pixels in size, which is the

standard dimension in video analysis algorithms. The figure demonstrates how the base chart

is divided into frames, where the first few frames form the context for movement creation,

and the subsequent frames become the subject of the forecast.

Three elements of the base chart’s construction become essential in using it to create a

video for forecasting future stock prices. Firstly, the chart must have an appropriate width.

Our single frame with a width of 64 pixels must demonstrate data for specific days, where

the number of pixels for each day must be equal. We dedicate four pixels for a single daily

observation. This size ensures a smooth line formation connecting individual observations

for closing prices and moving averages. The lines would be very jagged with two pixels;

three pixels are indivisible by 64, and a larger pixel count than four reduces the range of

information on a single frame without providing noticeable benefits in chart smoothness. In

this case, a chart with a width of 64 pixels accommodates 16 observations.

When each observation is conditioned on the n preceding ones, the frames must differ by

one observation. Hence, in the context of the base chart, expanding the number of displayed
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observations from 16 to 17 means expanding the chart from 64 to 68 pixels. However, Jiang

et al. (2023) demonstrates that 20-day market data predicts future stock returns. To extend

the range of input data for the model and to build a sufficient number of input frames with

movement context, we use the first five video frames as input data for the model (observed

period). In this approach, the first frame provides information within the scope of the first

16 observations (16 observations x four pixels = 64 pixels). The subsequent four frames

extend the number of observations to 20 and increase the base chart width to 80 pixels (16

observations x 4 pixels + four observations x four pixels = 80 pixels).

When modeling financial data, each observation is conditioned on the preceding ones,

meaning each frame in our representation must differ by one observation. In our base chart,

expanding the number of displayed observations from 16 to 17 corresponds to expanding the

chart from 64 to 68 pixels, as each observation is represented by four pixels.

However, Jiang et al. (2023) demonstrate that a 20-day market data window predicts

future stock returns. We construct our input frames with a movement context in mind to

align with this finding and extend our model’s input data range.

Our approach uses the first five video frames as input data for the model during the

observed period. The first frame provides information within the scope of the first 16 obser-

vations, translating to 64 pixels (16 observations multiplied by four pixels each).

The subsequent four frames do not add four complete sets of 16 observations; instead,

they add one per frame, extending the total number of observations to 20. This increases

the base chart width to 80 pixels, calculated as the original 16 observations multiplied by

four pixels each, plus the additional four observations multiplied by four pixels each (16

observations x 4 pixels + 4 observations x 4 pixels = 80 pixels).

This methodology allows us to capture the temporal dynamics of the market, representing

the data in a way that reflects both the sequential nature of financial observations and the

insights from existing research on market prediction

The design of our model includes a sequence of frames, where each frame represents a
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specific set of observations (e.g., price observations). The first frame encapsulates the initial

16 observations, represented by 64 pixels. Four subsequent frames add one observation,

extending the total to 80 pixels. These frames correspond to observed data. Additional

predictive frames forecast future observations, each requiring four pixels on the base chart.

The model forecasts ten frames, expanding the base chart to a total width of 120 pixels. This

structure allows for both the representation of observed data and sequential forecasting.

The second critical aspect of creating the base chart is the process of input data scaling.

First, to eliminate the impact of price jumps associated with stock operations such as splits,

we recalculate all chart elements based on the daily rate of returns, which are appropriately

corrected by the CRSP (Jiang et al., 2023). Second, how the base chart elements are scaled

significantly influences the potential look-ahead bias in the forecasting process.

Our model implements a chart scaling method that considers price and volume data

based solely on observations from a specific period. This scaling method involves mapping

the maximum and minimum prices and the top-level volume to specific pixel levels on the

chart.

For illustration, let us assume that the scaling method sets the minimum price at a pixel

level of 42 and the maximum at a pixel level of six.3 The algorithm can learn from this

pattern if the maximum price during the observed period only reaches a pixel level of 12

instead of six. Since the chart must touch the 42 and six-pixel points in each observation,

the algorithm can infer that there should be a price increase to the six-pixel level in the

forecast period. Figure 4 in the document illustrates this scaling method, showing how the

data is scaled on the base graph.4

The top-right chart is the pure input used to create frames, with dotted lines on the
3In this context, lower pixel levels correspond to higher prices, and higher pixel levels correspond to

lower prices. This mapping allows the algorithm to represent price movements within a defined pixel range,
facilitating the learning and prediction.

4In our model, we represent financial data as a sequence of frames, with each observation mapped to a
specific pixel level on a chart. The relationship between pixel levels and price levels is an arbitrary choice
that serves our analytical needs, and it is not related to the conventional understanding of pixel resolution
in digital images.
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other three graphs marking the extreme values for prices (upper part of the chart) or volume

(bottom part).

The potential issue is if we incorporate data from the forecast segment of the chart for

scaling purposes, the algorithm could swiftly identify specific patterns. For instance, if the

price maximum were to be within the forecast period instead of the observed period, the

chart in the observed period would not reach the value typically necessary to achieve the

maximum. Such a phenomenon would indicate to the algorithm that the price in the forecast

period should attain the maximum value, thereby leading to the look-ahead bias.

Our model scales prices and volumes based on the extremes observed in the input period.

This scaling method has an important implication: it can lead to situations where prices or

volumes in the forecast period exceed the acceptable range of the chart.

To illustrate, consider the chart area for prices, represented between the first and 48th

pixels. Within this range, the extremes for prices in the observed period are set at the 6th

and 42nd pixels.56 This means that the price can rise or fall by six pixels relative to the

extreme in the input period before it reaches its maximum or minimum permissible level on

the chart.

However, we have implemented a safeguard to handle situations where the data exceeds

this range. If a price or volume does exceed the acceptable range, we represent it by drawing

a single pixel at the appropriate extreme on the chart. This approach ensures that the
5We choose to represent the highest and lowest stock prices using the 6th and 42nd-pixel levels, respec-

tively. This choice is based on carefully analyzing the observed price range in our dataset, where we map
the historical extremes to these specific pixel values. By doing so, we ensure a standardized representation
that accommodates the inherent variability of stock prices while maintaining a consistent scale across dif-
ferent stocks and periods. The choice of these particular pixel levels is not arbitrary but reflects our data’s
underlying distribution of prices. It allows us to translate pixel levels back into real-world price levels using
the same scaling factors. This approach supports our analysis by providing a controlled yet flexible way to
represent price movements, and it can be adapted to different datasets by recalibrating the scaling factors
based on the observed price range.

6First, we can identify the minimum and maximum prices in the dataset to determine the range of prices.
For example, let’s say the minimum price is $10, and the maximum price is $100. Next, we determine the
range of pixels. In our case, the 6th pixel represents the maximum price, and the 42nd pixel represents the
minimum price. Third, we can calculate the scaling factor by Dividing the price range by the pixels. In this
example, the scaling factor would be ($100 - $10)/(6 - 42) = $2.27 per pixel. Lastly, we can convert pixel
levels to prices by multiplying the pixel levels by the scaling factor and adding the minimum price. In this
example, the 6th pixel would correspond to $100, and the 42nd pixel would correspond to $10.
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data remains within the chart’s defined bounds while still allowing some room for additional

changes.

Figure 4, specifically the bottom-right panel, illustrates this situation. It shows how the

scaling process accommodates extremes in the data, ensuring that the representation remains

consistent and meaningful, even when unexpected fluctuations occur.

We create a flexible yet controlled data representation by scaling prices and volumes

according to the observed extremes and implementing this safeguard. This approach supports

our analysis while accommodating financial markets’ dynamic and sometimes unpredictable

nature.

In summary, creating an image as a carrier of information about market states is an

exact task where individual elements can significantly impact how the machine learning

algorithm learns the dynamics of image changes. In the next section, we demonstrate the

requirements behind the machine learning algorithm capable of understanding the market

dynamics visualized as a video.

4 Model Selection

This section focuses on the Variational Recurrent Neural Networks (VRNN) model we em-

ploy for stock price forecasting. This model is pivotal in our research and serves several

simultaneous functions we will elaborate on. This discourse aims to delineate the elements

constituting the VRNN model and elucidate why a cohesive understanding of this model is

imperative for accomplishing our research task.

Our model needs to fulfill several critical functions concurrently. Firstly, it must ana-

lyze data in the context of time series. Secondly, it must analyze the image and correctly

identify correlations among its elements. Thirdly, it must be capable of capturing highly

uncertain correlations between the stock price at time t and market data from the preceding

n observation days.
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A vital aspect of our model is its capacity to forecast stock price levels rather than returns.

Stock prices exhibit high autocorrelation, a highly desired phenomenon when forecasting

subsequent video frames. Consequently, our model deviates from traditional financial models

centered around forecasting returns and directly forecasts stock price levels.

Our model incorporates several advanced concepts known in artificial intelligence research

to capture the high levels of uncertainty associated with the factors influencing stock price

fluctuations. This section succinctly delineates the main tasks and capabilities of each applied

algorithm.

At the outset of this section, a crucial point worth mentioning is that we delve into the

task of video prediction, a specific manifestation of self-supervision where generative models

learn to predict future frames in a video (Devlin, Chang, Lee, & Toutanova, 2018; Gidaris,

Singh, & Komodakis, 2018). By undertaking this approach, we aim to establish a firm

ground in the predictive modeling landscape.

4.1 Convolutional Neural Network

Convolutional Neural Networks (CNN) form our model’s backbone of image analysis, provid-

ing an effective means to identify dependencies among individual pixels on a chart. CNNs

leverage a mathematical operation known as convolution to scan and process input data,

allowing the model to identify and extract significant features from an image.

The fundamental idea behind CNNs involves using multiple layers of convolution and

applying a set of learnable filters to the raw pixel data of an image. The convolution operation

for a single 2D filter F of size a × a applied to a part of the image I is defined as:

Cij =
a−1∑
m=0

a−1∑
n=0

Ii+m,j+nFm,n (1)

where Ci,j is the convolved feature (or feature map), Ii+m,j+n represents a portion of the

image I, with the same size as the filter, that pixels’ are located at i+m and j+n. Finally,
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Fm,n represents the elements of the filer F with m and n indicating the location of the

elements within the filter. This process is repeated across all the image regions, effectively

sliding the filter across the image and enabling the network to learn spatial hierarchies or

patterns.

4.2 Recurrent Neural Networks

Stock price forecasting at time t based on market data from the previous n observations

inherently entails time series analysis. Predicting sequences is a natural task for Recurrent

Neural Networks (RNNs), a class of artificial neural networks designed to recognize patterns

in data sequences.

RNNs can uniquely retain information from prior inputs in their hidden states, thereby

modeling temporal dependencies. A basic form of an RNN can be represented as:

ht = σ (Whhht−1 +Wxhxt + bh) (2)

where ht is the hidden state at time t, xt is the input at time t, Wxh , and Whh are weights,

bh is a bias, and σ is an activation function.

While models based on the combination of CNNs with a recurrent model, such as the

Convolutional LSTM Network (Shi et al., 2015), are applicable for analyzing sequences of

image frames, traditional RNNs fall short when accounting for forecast uncertainty due to

their deterministic nature. Their only source of variability resides in the conditional output

probability model, which is insufficient for capturing the randomness intrinsic to the data

(Babaeizadeh, Finn, Erhan, Campbell, & Levine, 2017).

As demonstrated in Figure 5, typical probabilistic models, after applying the uncertainty,

generate an average or ‘shadow’ of various potential scenarios when forecasting movements for

phenomena laden with high uncertainty. While indicating the most probable trajectory, these

predictions are imprecise and thus inadequate for forecasting stock prices. This shortcoming
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necessitates the deployment of algorithms capable of predicting phenomena with high levels

of uncertainty. The following sections discuss the implementation of such models, focusing

on integrating Variational Autoencoders into RNN structures.

4.3 Variational Autoencoders

To enhance the efficacy of image series analysis, employing data compression of the im-

ages using autoencoders is practical. An autoencoder is a neural network architecture that

consists of two main components: an encoder and a decoder. The encoder compresses

high-dimensional image data into a compact space known as a bottleneck, and the decoder

reconstructs the original data from this compressed representation (refer to Figure 6).

The compression is achieved by minimizing the reconstruction loss, which is the difference

between the original input image and the output image generated by the decoder. A simple

autoencoder utilizes fully connected layers of a neural network, but autoencoder layers can

also encompass Convolutional Neural Network (CNN) cells, facilitating the compression of

image or sound data.

However, traditional autoencoders map input data to a single vector, rendering them

deterministic. This can be a limitation when modeling data with inherent variability. Non-

deterministic models that map data onto a distribution are employed to address this. These

models, known as Variational Autoencoders (VAEs), utilize two vectors—one for the mean

and another for the standard deviation of the feature distribution (Kingma & Welling, 2013;

Rezende, Mohamed, & Wierstra, 2014).

VAEs are a potent example of deep generational probabilistic graphical models adept

at capturing input data variability and generating a distribution that summarizes this vari-

ability (refer to Figure 7). They offer a harmonious blend of flexible non-linear mapping

between latent random states, observed outputs, and effective approximate inference. This

combination enables VAEs to model complex multimodal distributions, which are beneficial

when the underlying true data distribution comprises multimodal conditional distributions.
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The underlying principle of a VAE is rooted in Bayesian inference and can be expressed

as follows:

qϕ(z | x) = N
(
z | µϕ(x), σ

2
ϕ(x)I

)
(3)

where qϕ(z | x) is the approximate posterior (encoder), ϕ are the parameters of the encoder,

z is the latent variable, and x is the observed data. The parameters µϕ(x) and σ2
ϕ(x) of the

Gaussian distribution are outputs of the encoder. The variational part of the VAE concerns

minimizing the divergence between the true and approximate posterior.

Thanks to these modifications, VAEs can non-deterministically compress data and es-

timate various future states for each sample of their latent variables. The next section

will leverage VAEs’ properties and discuss their incorporation into the architecture of the

Variational Recurrent Neural Network (VRNN).

4.4 Variational Recurrent Neural Network

The architecture of the Variational Recurrent Neural Network (VRNN) combines the tempo-

ral modeling capabilities of RNNs with the probabilistic latent variable modeling capabilities

of VAEs, thereby enabling the creation of a powerful predictive model for complex and un-

certain processes (Chung et al., 2015). At its core, the VRNN model embeds a VAE in each

of the recurrent cells of the RNN.

This design allows the VRNN to handle the high uncertainty inherent in video frame

prediction tasks. The variational component of the VRNN enables the generation of multiple

plausible trajectories for object movement depicted in video frames, as opposed to a single

deterministic trajectory.

VRNN is formulated with an architecture that closely intertwines the hidden states of

the RNN (ht) with the latent variables of the VAE (zt) as shown by the following equations:

The prior:

pθ (zt | ht−1) = N
(
zt | µ(p)

θ (ht−1) , σ
(p)
θ (ht−1)

)
(4)
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The approximate posterior:

qϕ (zt | xt, ht−1) = N
(
zt | µ(q)

ϕ (xt, ht−1) , σ
(q)
ϕ (xt, ht−1)

)
(5)

The observation model:

pθ (xt | ht) = N
(
xt | µ(x)

θ (ht) , σ
(x)
θ (ht)

)
(6)

The hidden state update:

ht = fθ (ht−1, zt, xt) (7)

In the equations above, xt denotes the input at time t, zt is the latent variable, and ht is the

hidden state. The parameters θ and ϕ represent the network parameters for the generative

and inference models, respectively. The function fθ corresponds to the deterministic transi-

tion function of the RNN, which is usually a non-linear function such as a Long Short-Term

Memory (LSTM) (Hochreiter & Schmidhuber, 1997) or Gated Recurrent Unit (GRU) (Cho

et al., 2014).

Figure 8 presents a single cell of the VRNN model encapsulated within a dark red rect-

angle. This VRNN cell operates on the principles of a recurrent network, transforming the

prior hidden state ht−1 into the current hidden state ht. This ht can be used in the following

cell, establishing a temporal link across cells.

Inside the VRNN cell is a VAE that operates on the combined data of the prior hidden

state ht−1 and the new frame xt. It compresses this high-dimensional information using an

encoder and a decoder equipped with CNN layers, facilitating pattern recognition in the

input images.

In the VAE, the data is condensed into a latent vector zt through a process based on two

key elements: the mean vector (µ) and the variance vector (σ). This process can be seen in

the Equation 5, where the input data xt and the prior hidden state ht−1 are used to estimate
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the true distribution of the latent variable zt.

The decoder part of the VAE relates to the Equation 4 and Equation 6, generating new

frame data xt from the hidden state ht, and computing the distribution of the actual data.

The deviation between this generated data and the actual data is termed the reconstruction

error, which is minimized during training.

Finally, the VRNN cell uses a recursive function that integrates the information from

the prior hidden state ht−1, the current latent state zt, and the new frame xt. This process

is represented by the Equation 7, which updates the hidden state ht based on the previous

hidden state, the current latent state, and the new input frame.

In conclusion, the diagram exhibits how the VRNN model leverages the strengths of

RNNs, VAEs, and CNNs to handle complex, sequential data efficiently. It illustrates how

each component - prior, approximate posterior, observation model, and hidden state update

- contributes to the overall functioning of the model.

In conclusion, we demonstrate the connection between the RNN and VAE in the VRNN

architecture, presenting a comprehensive understanding of how the VAE’s non-deterministic

nature is integrated into the RNN, thereby enhancing its capacity to handle high-uncertainty

scenarios. The next section demonstrates the application of VRNN to finance.

5 Generating Future US Stock Prices as Video

In this chapter, we delve into our methodology, starting with a description of the data used

in the study. Then, we explain the procedure for training the VRNN model to generate

future frames. Further, we clarify how to read and interpret the data on the generated video

frames. Finally, we present our results, beginning with the probability of determining the

right direction of price changes, to showcase our model’s economic applications in portfolio

construction.
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5.1 Data

In our research, we utilize daily data from the Center for Research in Security Prices (CRSP)

for constituents of the S&P500 index. Historical compositions of companies included in the

index are acquired from Refinitiv. Our research sample pertains to the period from 1993

to 2021. Market data concerning the highest and lowest prices are available in CRSP since

June 1992.

We focus on S&P500 index companies for several crucial reasons. First, our research

involves forecasting daily stock price changes in the short term. Utilizing short-term fore-

casts to construct an investment portfolio necessitates frequent rebalancing and concurrent

sufficient liquidity of analyzed companies. Concentrating on the largest U.S. companies in

the S&P 500 ensures high liquidity and low transaction costs. This makes the results of our

research applicable to investors with high assets. See Table 1 for the number of firms in our

sample each year.

Second, a well-documented phenomenon is a decidedly lower predictability of the largest

companies’ stock prices.7 Hence, by concentrating on the largest stocks, we demonstrate that

our strategy achieves solid results amongst companies for which predicting the direction of

price changes is most challenging.

Finally, the machine learning task of the next frame forecasting requires significant com-

putational resources. A smaller number of companies in the analysis considerably accelerates

calculations, making our study feasible even with commonly available computing equipment.

5.2 Training VRNN

Our task is to forecast the trajectory of market data changes for the next ten trading days

using a method that involves both motion context and video frames. As mentioned in Sec-
7Jiang et al. (2023) in their research use all companies listed on NYSE, AMEX, and NASDAQ. They show

that the out-of-sample Sharpe ratio of strategies based on H-L decile spread portfolios sorted by image-based
return is highest with a five-day rebalancing. Results for 20-day and 60-day rebalancing are significantly
lower, and a Sharpe ratio above one is achievable only for equally weighted strategies. Value-weighted
strategies reach a Sharpe ratio above one only with a weekly (five-day) rebalancing.
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tion 3, we utilize five ‘context frames,’ which define the input data and signal the direction of

object movement found on individual frames. These context frames encapsulate information

from 20 trading days of historical market data, approximating one month (from t-19 to t),

and predict 10 trading days of future market data that approximate two weeks (from t+1 to

t+10). These changes encompass closing prices, maximum and minimum prices, the direc-

tion of a 20-day moving average, and volumes. By utilizing data other than closing prices,

we aim to enhance the forecast capabilities related to future changes in the closing price.

To train the model, we generate 15 frames, comprising five context frames and ten forecast

frames. This allows the model to learn the relationships between the context and forecast

frames independently.

Our model’s design involves a base chart with a 64x120 pixel resolution, representing

different dimensions or features of the market data, such as price and volume. We divide

this chart into 15 parts, corresponding to five context frames (capturing 20 trading days of

historical data) and ten forecast frames (predicting the next 10 trading days). The choice of

15 parts and the specific resolution aligns with our model’s architecture and the nature of

the data.

We employ a sliding window method with a 64x64 resolution, moving the window by

four pixels at a time across the base chart. This technique allows us to analyze sequential

segments of the data, capturing temporal patterns and relationships.

Each observation in our model corresponds to the last trading day of a calendar week (day

t). While our data includes daily closing prices, we may have chosen this weekly reference

point to align with other data sources, reduce noise, or capture specific market patterns

relevant to our study.

Generative models, such as VRNNs, utilize specific measures to determine the degree of fit

between the generated image and the actual one. One such measure is the ‘loss,’ often called

the reconstruction loss (loss_rec). This loss quantifies the discrepancy between the actual

data and the reconstructed data generated by the model. The smaller the reconstruction loss,
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the more closely the generated data matches the actual data, indicating a better-performing

model.

The second measure, ‘prior loss’ (loss_prior), deals with regularizing the latent variables

in the VRNN. In simple terms, it ensures that the distribution of the latent variables follows

a specific pattern, often a standard Gaussian distribution. By minimizing the prior loss, we

encourage the latent variables to conform to this pattern, which can improve the model’s

generative abilities.

Finally, the total ‘loss’ of the VRNN model is usually a combination of these two com-

ponents: the reconstruction and prior losses. By minimizing these two components jointly,

we aim to train a model that can effectively generate data similar to the training set while

maintaining a regular structure in the latent space. Therefore, this loss function plays a

crucial role in training our VRNN model and, subsequently, the quality of the predictions it

generates.

Our study divides the data into a training period (1992-2000) and a testing period (2001-

2021). We train the model once on the training data, setting aside several hundred of the

last observations from the training set as a validation sample to measure the model’s training

level. We determine the number of epochs necessary to train the model based on the total

‘loss’ in the validation sample and the early stopping approach.

All of our calculations are conducted using Python. We use the PyTorch package and

perform demanding computations at the Foundry and Hellbender high-power computing

environments at the University of Missouri.

5.3 Reading the Market Data from Video Frames

The output of our model consists of predicted frames. Accurately reading the data from

these frames is crucial to conducting accuracy tests and applying these forecasts to portfolio

construction. In this process, we examine each generated frame and read pixels from the

relevant columns of the images, which correspond to the stock prices. We only search for
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white pixels, as closing prices are denoted in white. For instance, on the first generated

frames, the first column of pixels on the right contains information about the forecasted

closing price on the day t+1.

Subsequently, on the second of the generated frames, the fifth column of pixels from the

right contains data for the same observation as the previous frame from day t+1 but also

includes an additional forecast in the first column from the right with the closing price from

day t+2. Proceeding this manner, we arrive at the tenth generated frame, which contains

forecasted prices for days t+1 to t+10. We average all readings for the same days to eliminate

potential noise or vagueness in the forecasts. The information read on the pixel’s position

forecasting the price on the day t+n can be compared with the reading of information about

the pixel on the day t. This comparison provides the simplest yet effective way to verify

whether the model has predicted a price increase, stability, or decrease for a specified number

of days ahead. However, not only can the direction of changes be significant, but so can its

scale. Therefore, forecasts differing by a larger (or smaller) number of pixels can be more

(or less) important.

Finally, the number of days n utilized to forecast weekly price changes is also important.

The maximum number of session days in a single week is five. Nevertheless, some weeks have

fewer days. For this purpose, for each day t, representing the last session date in a given

calendar week, we count the number of session days in the following calendar week. This

calculation determines the number of session days in the next week. It serves as a reference

point for choosing the appropriate length of the forecast from the data generated by the

VRNN.

5.4 Accuracy of Forecasted Price Direction

Table 2 offers an intricate evaluation of the predictive power of our model over a spectrum of

forecast durations. ‘Correct’ represents instances where the model’s forecasts accurately mir-

rored the observed market trajectory. For instance, the accuracy metric for a one-day-ahead
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forecast is pegged at 58%, showcasing a noteworthy precision level for near-term projections.

Conversely, ‘Incorrect’ embodies situations where the model’s estimations diverged from ac-

tual outcomes. The consistency of the incorrect rates across different forecast horizons is

evident, suggesting a stable predictive behavior of the model. Lastly, ‘Unclear’ alludes to

cases where the model’s forecasts were neither distinctly correct nor incorrect, often due to

ambiguities or inconclusiveness in the data visualization. This could arise from challenges

in discerning a definitive market pattern, potentially stemming from data noise, heightened

volatility, or multifaceted market dynamics.

One remarkable observation from Table 2 is the fairly uniform distribution of correct

and incorrect rates, irrespective of the prediction horizon. However, a nuanced takeaway is

the increase in unclear predictions as the forecast horizon extends, signaling an avenue for

enhancement. While our model exhibits commendable accuracy for shorter durations, the

escalating ambiguity for protracted horizons necessitates further refinements in the model’s

architecture, data preprocessing techniques, and feature engineering to bolster its generaliz-

ability.

The results in Table 2 reveal some key insights. The correct and incorrect rates are

similar across the length of the predicted period in days. Our correction rate is comparable

with that of Jiang et al. (2023).

This table has some limitations. We do not report whether there is an asymmetric effect

between negative and positive predictions. The correction presents the same direction of

prediction for the actual and predicted value. Second, we do not consider the magnitude of

the difference between actual and prediction. Although the model presents the correction

that is greater than the incorrect one, the margin is narrow, between 12

5.5 Portfolio Performance

We analyze value-weighted and equal-weighted portfolios across five quintiles and find that

returns and Sharpe ratios increased with each quintile. Our VRM strategy’s long-short
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portfolios produce the highest performance. See Table 3.

We also compare our results with non-machine learning strategies, including momentum

(MOM), short-term reversal (ST_REV), and long-term reversal (LT_REV). Our equal-

weighted and value-weighted portfolios generate higher Sharpe and Calmar ratios than these

strategies. Specifically, VRM achieved Sharpe ratios of 2.47 and 2.94 for value-weighted

and equal-weighted portfolios, respectively, while MOM achieves 0.05 and 0.01, ST_REV

achieves 0.24 and 0.51, and LT_REV achieves 0.05 and 0.30.

As a benchmark, the CNN strategy of Jiang et al. (2023) generates Sharpe ratio of 0.96

and 0.78 for their value-weighted and equal-weighted portfolios, respectively, for the 500

largest stocks in their sample, which are comparable with us. Our Sharpe ratio is more than

two times higher than that from their paper. Our methodology is composed of multiple steps

and thus computing intensive. Table 4 shows our performance across transaction costs from

one to ten basis points. The Sharpe ratio for value- and equal-weighted portfolio is still 1.26

to 2.49 (1.61 to 2.95) for transaction cost of 10 basis points to zero.

We assess our performance based on risk-adjusted returns and analyze the returns of

our long-short portfolios sorted by predicted change in pixels in Table 5. Every week, we

buy stocks in the top quintile of predicted pixel change and sell those in the bottom. Our

estimation of risk-adjusted returns or alpha considers factors such as CAPM, FF3, FF5, FF6,

Q4, DHS, short-term, and long-term reversal. Surprisingly, our alpha is highly significant,

ranging from 0.0058 to 0.0059 with a t-stat of about 13 for equal-weighted and 0.0053 to

0.0058 for value-weighted portfolios with an average of 12. Our long-short strategy that sorts

by predicted pixel change may provide a strong signal not captured by traditional factor

models like CAPM, FF3, FF5, FF6, and DHS. This indicates that our alpha is significant

and robust to different model specifications.
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6 Mechanisms

We delve into the mechanics behind our strategy. To achieve this, we conduct the Fama-

MacBeth cross-sectional regressions of the predicted change in pixels generated by our strat-

egy on the firm-level trend strategies and characteristics presented in Table 6. In specification

(1), we observe that our predicted change in pixels is negatively influenced by moving average

returns over five, twenty, and sixty days. Specification (2) includes firm characteristics that

are known to predict stock returns and trading, such as beta, bid-ask spread, trading volume,

size, price delay, return volatility, and number of zero trades, as well as momentum returns

from 1, 6, 12, and 36 months. These variables have been computed from the code provided

by Green, Hand, and Zhang (2017), and are utilized by many studies, including Gu et al.

(2020). The last specification pools all variables from specifications (1) and (2). We find that

the moving average for 60 days survives, but the significance is weak at the 10% level. Size

is also negative but weakly significant. The larger the size of the firm, the lower the change

in pixels. Momentum one month and bid-ask spread are negative and highly significant at

the 1% level. The higher the momentum and the larger the bid-ask spread, the lower the

change in pixels. Illiquidity has been found to decrease a change in price movement. The

CAPM beta is positive but weakly significant.

Moving forward, we explore whether the actual weekly change is in line with our fore-

casted change in pixel. Table 8 presents the Fama-MacBeth cross-sectional regression where

we regress weekly returns on forecasted change in pixels and other characteristics that we

have included in the previous table. Specification (1) shows that predicted change in pixels

is positively correlated with weekly returns, but the correlation is not significant. Specifica-

tion (2) includes all variables to alleviate omitted variable bias, in addition to pixel change

predicting weekly returns. Pixel change becomes strongly significant at the 1% level. We

rely on our conclusion based on this specification, as it includes important characteristics

that are shown to predict firm returns. Overall, the result seems to support our forecasted

change in pixel or price predicts stock returns.
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7 Who Apply the VRNN strategy?

Our analysis delves into the adoption of the Variational Recurrent Neural Network (VRNN)

strategy across different types of traders. To discern retail trading activity, we employ the

methodology outlined by Boehmer, Jones, Zhang, and Zhang, 2021, calculating retail volume

both in shares and U.S. dollars, normalized by the number of shares outstanding and market

capitalization, respectively. Institutional trading data is derived from Thomson Reuters 13F

filings, measuring changes in institutional holdings relative to stock market capitalization.

In our empirical tests, detailed in Table 8, we regress the VRNN strategy’s predicted weekly

returns—specifically, those derived from the first specification in Table 7—against metrics

of retail and institutional trading, along with moving average returns and additional firm

characteristics. Institutional trading emerges as highly significant at the 1% level, affirming

its substantial correlation with the VRNN strategy’s application. Interestingly, retail trading

also shows significance, albeit to a lesser extent, suggesting that a subset of retail traders,

potentially the more sophisticated ones, might be utilizing this strategy. This observation

holds true when analyzing the data based on the percentage of retail volume relative to the

number of shares outstanding. Consequently, our findings robustly indicate that institutional

traders are implementing the VRNN strategy, with unexpected but notable adoption among

retail traders as well.

8 Conclusion

In conclusion, this research presents a novel approach to the prediction of stock price

movements by using advanced machine learning techniques, particularly Variational Recur-

rent Neural Networks (VRNNs). By transforming daily price changes into visual repre-

sentations and forecasting future trajectories, we’ve shown that our model delivers superior

performance, especially for large, less predictable stocks. This approach holds significant im-

plications for portfolio construction, particularly regarding liquidity and rebalancing strate-
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gies.

Our research demonstrates the potential of machine learning in augmenting the under-

standing of financial market dynamics. However, it also acknowledges the limitations of

this approach, including its computationally intensive nature and potential specificity to the

market conditions of the training dataset.

Moving forward, it is clear that the fusion of machine learning and finance research can

lead to significant advancements in understanding and predicting market trends. As technol-

ogy evolves and computational resources become more accessible, adopting and refining such

methods in finance are likely to continue and provide further insights into market dynamics.

This study’s results indicate promising future research directions, particularly in exploring

the intricacies of market behavior using innovative computational methods.

We hope this study sparks further interest and research in this field, enabling more

sophisticated models that can better capture the intricacies of financial markets and provide

investors with superior tools for navigating the complexities of the market.
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Figure 1: Graphs comparison

In this figure, we show a comparison between two graphs. The graph on the left is the base graph that we
use to create frames for animations that, with 20 days historical daily observation predict up to 10 days
of future market data. On the right, we show a graph prepared by Jiang, Kelly, and Xiu (2020) where 20
historical daily observations are used to predict the price direction in 5, 20, or 60 days.

Figure 2: Sample video frames

This figure presents sample frames of four videos. Each video consists of ten frames. Two upper rows demon-
strate frames from video database BAIR Robot Pushing frequently used by researchers to test algorithms
dedicated to next frame forecasting task (Ebert, Finn, Lee, & Levine, 2017). Two bottom rows show frames
from graphs created in this research.
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Figure 3: Frames of a Video from a Base Chart

This figure demonstrates the transformation of a base chart into frames. The base chart (at the top of
the figure) has dimension 64x120 pixels. It is separated into 15 frames (at the bottom of the figure) with
dimension 64x64 pixels. The first frame and the last are demonstrated in the front of others.
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Figure 4: The data scaling procedure

This figure demonstrates how we scale the data on the base graph. We present four base graphs that are used
to form video frames. The top-right chart is a pure input to create frames. On the other three graphs, we
add, for information purposes, dotted lines that demonstrate the borders forming extreme values for prices
(upper part of the chart) or volume (bottom part).

Figure 5: Generative Outcome of Deterministic vs. Probabilistic Model

The top part demonstrates frames of deterministic model where a box moves in a random direction. The
bottom part, shows a probabilistic outcome. By introducting the uncertainty the generated objects are
blurry and averaged. Figure inspired by Babaeizadeh, Finn, Erhan, Campbell, and Levine (2017).
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Figure 6: Autoencoder

In autoencoder the input data is compressed with encoder to bottleneck and then it is decompressed with
decoder. In the training process the algorithm’s task it to minimize the comparison error between the original
input and the decoded output.

Figure 7: Variational Autoencoder (VAE)

Variational autoencoder is a type of autoencoder where encoder takes input and output two vectors, one
with the means and the other with variance. Next, mean and variance vector are used to create a sampled
vector. The decoder reconstruct input from the sampled vector.

39



Figure 8: Variational Recurrent Neural Network (VRNN)

The figure illustrates a single Variational Recurrent Neural Network (VRNN) cell. In VRNN each cell con-
tains a Variational Autoencoder (VAE) with Convolutional Neural Network (CNN) layers, which condenses
high-dimensional data into a low-dimensional latent vector. The prior hidden state (ht−1), current latent
state (zt), and new input frame (xt) are processed through a recursive function to yield the current hidden
state (ht).
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Table 1: Descriptive Statistics
The table presents an overview of the research sample (SAMPLE) vs. S&P500 Index (S&P500) in yearly
periods. Stocks in the research sample demonstrate equal-weigh average weekly returns (RetEw), value-
weight average weekly returns (RetVw), total market capitalization in millions of dollars (Mcap), and number
of stocks (No). The data for S&P Index covers market capitalization in millions of dollars (Mcap).

Sample S&P500

year RetEw RetVw Mcap No Mcap
2001 0.18 0.13 8,737 444 10,731
2002 -0.32 -0.28 7,459 438 9,143
2003 0.70 0.59 7,322 436 8,900
2004 0.35 0.29 8,551 439 10,522
2005 0.18 0.19 9,084 441 11,060
2006 0.31 0.38 9,747 449 11,849
2007 0.03 0.20 10,871 451 13,141
2008 -0.81 -0.50 8,924 457 10,666
2009 0.92 0.75 7,096 449 8,295
2010 0.43 0.38 8,578 442 10,288
2011 0.07 0.18 9,514 443 11,554
2012 0.28 0.32 10,248 438 12,445
2013 0.67 0.64 11,999 433 14,664
2014 0.31 0.37 14,033 430 17,197
2015 -0.04 0.08 14,772 439 18,217
2016 0.31 0.32 14,699 437 18,197
2017 0.38 0.47 16,938 443 21,027
2018 -0.19 -0.05 18,699 438 23,293
2019 0.54 0.64 19,511 431 24,315
2020 0.43 0.61 21,820 440 26,622
2021 0.51 0.58 28,733 440 36,176

Table 2: Accuracy of Predicted Price Direction
This table reports the out-of-sample accuracy of price change direction depending on the length of the
predicted period in days. We define the positive direction as not smaller than zero and the negative direction
as less than zero. The correct predictions state that the model predicts positive (negative) price change when
the price change is positive (negative) and incorrect demonstrate that the model predicts positive (negative)
and it is negative (positive). The unclear observations denote graphs where the pixels displaying closing
prices are unavailable. We calculate accuracy by dividing the number of correct (incorrect) observations by
the total number of clear observations. The share of unclear observations is estimated as the number of
unclear observations to the total number of samples.

1 2 3 4 5 6 7 8 9 10
Correct 0.58 0.57 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57
Incorrect 0.42 0.43 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.43
Unclear 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.07 0.07 0.29
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Table 3: Portfolio Performance
The table compares the performance of value-weight (Panel A) and equal-weight (Panel B) quintile portfolios sorted by the out-of-sample pixel change
for the next week predicted by our VRNN model. Animated Stock Market portfolio (ASM) is sorted on out-of-sample predicted pixel change for the
next week. Momentum (MOM), short-term reversal (ST_REV), and LT_REV portfolios are sorted on prior monthly returns 12-2, 1-0, and 60-13,
respectively. Panels report annual return (Ret), annualized standard deviation (SD), maximum drawdown (MD), Sharpe ratio (SR), and Calmar
Ratio (CR).

PANEL A: Value-Weight
ASM MOM ST_REV LT_REV

Ret SD MD SR CR Ret SD MD SR CR Ret SD MD SR CR Ret SD MD SR CR
Low 0.03 0.17 0.74 0.15 0.04 0.10 0.31 0.79 0.31 0.12 0.07 0.18 0.62 0.40 0.12 0.10 0.22 0.53 0.44 0.19
2 0.11 0.16 0.51 0.68 0.22 0.11 0.19 0.57 0.59 0.20 0.09 0.15 0.47 0.61 0.20 0.10 0.17 0.53 0.62 0.19
3 0.16 0.16 0.39 1.00 0.42 0.11 0.15 0.47 0.74 0.24 0.10 0.15 0.45 0.70 0.23 0.09 0.15 0.48 0.64 0.20
4 0.19 0.17 0.40 1.11 0.47 0.11 0.14 0.41 0.75 0.26 0.12 0.18 0.50 0.66 0.24 0.11 0.14 0.44 0.83 0.26
High 0.31 0.16 0.25 1.87 1.23 0.11 0.17 0.51 0.66 0.22 0.12 0.26 0.75 0.45 0.15 0.11 0.17 0.54 0.63 0.20
H-L 0.28 0.11 0.15 2.47 1.84 0.01 0.27 0.70 0.05 0.02 0.04 0.18 0.49 0.24 0.09 0.01 0.15 0.56 0.05 0.01

PANEL B: Equal-Weight
Low -0.00 0.19 0.80 -0.02 -0.01 0.15 0.30 0.69 0.50 0.22 0.10 0.21 0.62 0.47 0.16 0.17 0.26 0.64 0.66 0.27
2 0.08 0.19 0.63 0.43 0.13 0.15 0.20 0.60 0.72 0.24 0.13 0.18 0.56 0.72 0.23 0.14 0.19 0.57 0.72 0.24
3 0.13 0.19 0.60 0.66 0.21 0.14 0.17 0.52 0.83 0.28 0.14 0.18 0.57 0.75 0.24 0.14 0.17 0.51 0.80 0.27
4 0.17 0.19 0.50 0.87 0.34 0.15 0.16 0.47 0.90 0.31 0.15 0.20 0.63 0.71 0.23 0.13 0.17 0.54 0.76 0.24
High 0.30 0.19 0.40 1.59 0.75 0.15 0.19 0.56 0.79 0.27 0.17 0.28 0.63 0.61 0.27 0.13 0.20 0.57 0.65 0.23
H-L 0.30 0.10 0.13 2.94 2.31 0.00 0.23 0.71 0.01 0.00 0.08 0.15 0.20 0.51 0.38 -0.04 0.14 0.73 -0.30 -0.06
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Table 4: VRNN Portfolios vs. Transactions Costs
The table presents the impact of transaction costs on the strategy performance and the average monthly
turnover. Panel A shows the performance of value-weight portfolios and Panel B of the equal-weight. Panels
report annual return (Ret), Sharpe ratio (SR), Calmar Ratio (CR), and average monthly turnover (Turnover).

PANEL A: Value-Weight
0.00% 0.01% 0.02% 0.03% 0.04% 0.05% 0.06% 0.07% 0.08% 0.09% 0.10%

Ret 0.28 0.27 0.25 0.24 0.23 0.21 0.20 0.18 0.17 0.16 0.14
SR 2.49 2.36 2.24 2.12 1.99 1.87 1.75 1.63 1.50 1.38 1.26
CR 1.85 1.74 1.64 1.53 1.43 1.33 1.23 1.14 1.04 0.95 0.86
Turnover 1156%

PANEL B: Equal-Weight
Ret 0.30 0.29 0.27 0.26 0.24 0.23 0.22 0.20 0.19 0.18 0.16
SR 2.95 2.82 2.68 2.55 2.42 2.28 2.15 2.01 1.88 1.75 1.61
CR 2.32 2.19 2.06 1.94 1.82 1.70 1.58 1.47 1.35 1.25 1.14
Turnover 1121%

Table 5: Alphas from the VRNN-based strategy
This table presents alpha from regressing the equal-weighted and value-weighted returns of the long-short
portfolios sorted by the out-of-sample predicted pixel change for the next week. The independent variables
are the factors from CAPM, FF3, FF5, FF6, DHS, and all combined. ***, **, and * present one, five and
ten percent significance, respectively.

Equal-Weight Value-Weight

Model Coefficient t-stat Coefficient t-stat
CAPM 0.0058*** 13.28 0.0054*** 11.75
FF3 0.0058*** 13.26 0.0058*** 13.26
FF5 0.0058*** 13.41 0.0056*** 12.04
FF6 0.0058*** 13.45 0.0056*** 12.10
Q4 0.0059*** 13.35 0.0055*** 11.87
DHS 0.0059*** 13.58 0.0056*** 12.20
All+STR +LTR 0.0059*** 13.49 0.0053*** 11.03
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Table 6: VRNN on stock characteristics
This table presents the Fama-MacBeth cross-sectional regression. The dependent variable is predicted pixels
change in a one-week horizon based on our VRNN model. The independent variables are lagged and collected
from Gu, Kelly, and Xiu, 2020. Mov_avg_Ndays is the moving average of daily returns over N days.
Mov_avg_Ndays are lagged by one week, the monthly variables such as momentum (mom) variables are
lagged by one month, and other variables are lagged annually, consistent with the original paper. The
standard errors are Newey-West adjusted. ***, **, and * present one, five, and ten percent significance,
respectively.

(1) (2)

Dep. Variable: Predicted Pixels Change Predicted Pixels Change

mov_av_est_5 -0.056** -0.016
mov_av_est_20 -0.058** -0.021*
mov_av_est_60 -0.051* -0.011*
mve -0.006*
mom6m -0.002
mom12m 0.005
mom36m 0.008
mom1m -0.009***
dolvol -0.017
retvol -0.001**
baspread -0.001***
ill -0.000*
zerotrade 0.000**
BETA 0.005*
pricedelay 0.001
R2 0.003 0.013
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Table 7: Future returns on VRNN and stock characteristics
This table presents the Fama-MacBeth cross-sectional regression. The dependent variable is a weekly return.
The independent variables are predicted pixels based on our VRNN model, Mov_avg_Ndays, and lagged
characteristics collected from Gu, Kelly, and Xiu, 2020. Mov_avg_Ndays is the moving average of daily
returns over N days. The Mov_avg_Ndays are lagged by one week, monthly variables such as momentum
(mom) variables are lagged by one month, and other variables are lagged annually, consistent with the
original paper. The standard errors are Newey-West adjusted. ***, **, and * present one, five, and ten
percent significance, respectively.

(1) (2) (3)

Dep. Variable WeekRet WeekRet WeekRet

pred_week 0.145 0.289***
mov_av_est_5 0.026 0.005
mov_av_est_20 0.027 0.005
mov_av_est_60 0.031 0.003
mve -0.001
mom6m -0.003
mom12m -0.006
mom36m 0.001
mom1m -0.000
dolvol 0.000
retvol 0.000
baspread 0.000
ill 0.000
zerotrade -0.000
BETA 0.002
pricedelay -0.001
R2 0.002 0.012 0.024
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Table 8: Predicted returns from VRNN strategy and retail vs. institutional trading
This table presents the Fama-MacBeth regression. The dependent variable is the predicted weekly return
from the VRNN strategy or the predicted returns in the specification (1) in Table 7. The independent vari-
ables are retail trading volume per stock market cap, institutional trading per market cap, Mov_avg_Ndays,
and lagged characteristics collected from Gu, Kelly, and Xiu, 2020. Mov_avg_Ndays is the moving average
of daily returns over N days. The Mov_avg_Ndays are lagged by one week, monthly variables such as
momentum (mom) variables are lagged by one month, and other variables are lagged annually, consistent
with the original paper. The standard errors are Newey-West adjusted. ***, **, and * present one, five, and
ten percent significance, respectively.

(3)

Dep. Variable Predicted Weekly Return

Retail trading 0.171*
Institutional trading 0.245***
mov_av_est_5 0.016
mov_av_est_20 0.004
mov_av_est_60 0.002
mve -0.013**
mom6m -0.004
mom12m -0.005
mom36m 0.003
mom1m -0.000
dolvol 0.000
retvol 0.001
baspread 0.002
ill 0.000
zerotrade -0.001
BETA 0.001
pricedelay -0.001
R2 0.027
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